Fusing Bird View LIDAR Point Cloud and Front View Camera Image for Deep Object Detection

نویسندگان

  • Zining Wang
  • Wei Zhan
  • Masayoshi Tomizuka
چکیده

We propose a new method for fusing a LIDAR point cloud and camera-captured images in the deep convolutional neural network (CNN). The proposed method constructs a new layer called non-homogeneous pooling layer to transform features between bird view map and front view map. The sparse LIDAR point cloud is used to construct the mapping between the two maps. The pooling layer allows efficient fusion of the bird view and front view features at any stage of the network. This is favorable for the 3D-object detection using camera-LIDAR fusion in autonomous driving scenarios. A corresponding deep CNN is designed and tested on the KITTI[1] bird view object detection dataset, which produces 3D bounding boxes from the bird view map. The fusion method shows particular benefit for detection of pedestrians in the bird view compared to other fusion-based object detection networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PointFusion: Deep Sensor Fusion for 3D Bounding Box Estimation

We present PointFusion, a generic 3D object detection method that leverages both image and 3D point cloud information. Unlike existing methods that either use multistage pipelines or hold sensor and dataset-specific assumptions, PointFusion is conceptually simple and applicationagnostic. The image data and the raw point cloud data are independently processed by a CNN and a PointNet architecture...

متن کامل

Augmented Reality System Using Lidar Point Cloud Data for Displaying Dimensional Information of Objects on Mobile Phones

Mobile augmented reality system is the next generation technology to visualise 3D real world intelligently. The technology is expanding at a fast pace to upgrade the status of a smart phone to an intelligent device. The research problem identified and presented in the current work is to view actual dimensions of various objects that are captured by a smart phone in real time. The methodology pr...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR point cloud with a region proposal network (RPN), most existing efforts have focused on hand-crafted feature representations, for example, a bird’s eye view projection. In this work, we r...

متن کامل

Fusion of Terrestrial LiDAR Point Clouds with Color Imagery

Display and representation of real world scenes in three dimensions (3D) is a useful tool for facilitating visualization and scientific measurements. Light detection and ranging (LiDAR) allows scenes to be captured and represented in laser intensity as a set of 3D points (point cloud) with high spatial accuracy. Taking pictures with even a modest camera allows scenes to be displayed as high-res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06703  شماره 

صفحات  -

تاریخ انتشار 2017